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Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well
Bose-Einstein condensates
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We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well
Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. A local
nonlinear S-wave scattering interaction has the effect of creating spin squeezing at each well, while a tunneling
coupling, analogous to a beam splitter in optics, introduces an interference between these fields that causes
interwell entanglement. We consider two internal modes at each well so that the entanglement can be detected
by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of
continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number. It becomes
sufficiently strong at higher numbers of atoms so that the EPR paradox and steering nonlocality can be realized.
The entanglement is predicted using an analytical approach and, for larger atom numbers, using stochastic
simulations based on a truncated Wigner function approximation. We find generally that strong tunneling is
favorable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.
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I. INTRODUCTION

Entanglement between groups of atoms has been con-
firmed experimentally, and recent experiments reported the
development of quantum correlated twin-atom beams [1–4].
This represents a first benchmark for investigations into mul-
tiparticle nonlocality that could deepen our understanding of
“classicality versus quantumness” for macroscopic objects [5].
So far, however, there has been no conclusive demonstration
reported of stronger forms of quantum nonlocality (such as vi-
olations of Bell inequalities [6], the Einstein-Podolsky-Rosen
paradox [7–10], or steering [11–13]) using mesoscopic groups
of atoms. However, there have been a number of theoretical
proposals and studies of the correlation between spatially
separated atoms [14–21]. The highly efficient detection of
an Einstein-Podolsky-Rosen (EPR) paradox for quadrature
field amplitudes [8–10], and loophole-free steering for photons
[13], has been been realized experimentally in optics.

In this paper, our goal is to develop a theoretical strategy for
generating spatial entanglement between mesoscopic groups
of atoms confined to the potential wells of an ultracold
Bose-Einstein condensate (BEC). Such coupled-well systems
have been experimentally verified as entangled [22], but we
seek to achieve an unambiguous EPR paradox-steering type of
entanglement, in which the entanglement between the atoms of
different wells can be characterized and potentially extended
to situations involving the genuine multipartite entanglement
of groups of atoms at three or more sites [23]. Apart from the
potential to test quantum mechanics in new regimes, this type
of entanglement underpins many important applications in the
fields of quantum information and metrology [24–27].

There are many possible strategies for the generation of
multiatom spatial EPR entanglement. A recent experiment has
demonstrated EPR-type correlation near the coherent noise
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level using spin-changing collisions [3], and there has been
a recent proposal to create spatial entanglement between two
wells by direct adiabatic cooling to the ground state [28]. The
most common method used in quantum optics, however, is
to combine two squeezed single-mode fields through a beam
splitter (BS) [9,27,29,30]. The method relies on a nonlinearity
to produce squeezing in each mode locally, followed by a linear
coupling transformation to create the entanglement between
the two modes.

Motivated by this, we explore in this paper a similar
dynamical strategy applied to the BEC double potential
well system. Following Milburn et al. [31], we assume the
atoms of each well can be modeled using a single-mode
approximation, and we introduce the respective localized
boson operators a and b. In this case, the S-wave scattering
intrawell interactions, given by Hamiltonians Ĥ = h̄gâ†2â2

and Ĥ = h̄gb̂†2b̂2, provide the nonlinearity at each well
that generates a local spin squeezing, while the coupling
or tunneling interwell term, modeled as Ĥ = h̄κ(â†b̂ + âb̂†),
provides the linear beam-splitter transformation [32,33] that
generates interwell two-mode entanglement.

We consider two alternative dynamical strategies: In the
first the local nonlinear and nonlocal tunneling processes act
sequentially; in the second they act simultaneously. While the
second strategy is likely to be more practical, we analyze the
sequential case first, in the earlier sections of the paper, because
it allows a full quantum solution within the constraints of
the two-mode model.

Substantial entanglement can be generated in both cases,
provided parameters are optimized. An analysis of what is
accessible experimentally indicates that this entanglement
could be within reach of current BEC experiments, though
the realization of EPR and steering paradoxes requires a
large effective coupling parameter. This may require more
sophisticated experimental procedures with spatially extended
coupling regions or Bloch modes in lattices to increase the
effective coupling parameter κ above the typical values for
two-well systems.
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We find that a large EPR entanglement requires using a
large number N of atoms, as is consistent with previous
studies of optical fields where EPR entanglement increases
with photon number [9]. This result is verified using both a
full quantum analysis and the truncated Wigner function [34],
which becomes valid as 1/N3/2 → 0. The manifestation of a
continuous variable (CV) EPR paradox, which involves both
intensity and phase-type correlation, has been shown for large
optical amplitudes [35]. The experimental realization of such
entanglement for large groups of atoms would be an interesting
result, however, given, that the EPR paradox-steering type of
entanglement represents a stronger nonlocality test of quantum
mechanics than the detection of entanglement itself [11], and
generally shows greater sensitivity to decoherence [12]. The
prediction is consistent with that of Ferris et al. [20] who
studied EPR entanglement in BEC four-wave mixing, though
in our case an atomic homodyne detection [3] is not used. Our
EPR observables are the local Schwinger spins that can be
measured via Rabi rotation and atom counting.

The paper is organized as follows. We first summarize in
Sec. II the meaning of EPR entanglement and outline how it is
to be detected. The dynamical solutions for the entanglement
via the two-step method are presented in Secs. III and IV. The
truncated Wigner function simulations and the results for the
interwell entanglement via simultaneous evolution are treated
in Sec. V. An analysis modeling current experimental regimes,
including the effect of nonlinear losses, indicates that the
EPR entanglement is robust against the expected decoherence
effects. Finally, we summarize the overall results.

II. EPR ENTANGLEMENT

The original CV EPR paradox [7] considers correlations
between the positions and momenta of two particles emitted
from a source. With optical or atomic Bose fields one can define
the quadrature phase amplitudes of two spatially separated
field modes as X̂A = (â† + â)/2, and P̂A = (â† − â)/2i, and
X̂B = (b̂† + b̂)/2, and P̂B = (b̂† − b̂)/2i. These are analogous
to the position and momentum of a two-particle system.

The EPR paradox arises when both X̂A and X̂B , and P̂A

and P̂B , are maximally correlated, so that the measurement of
X̂A enables the exact prediction of the outcome for the mea-
surement of X̂B , and the measurement of P̂A enables the exact
prediction of the outcome of the measurement of P̂B . EPR
showed, from the premise of local realism (i.e., no “spooky
action at distance”) that the action of measuring X̂A could not
“create” the result for X̂B . They then concluded, since the result
for X̂B can be predicted without disturbance of that system,
that the assumption of local realism implies that the result for
the outcome is predetermined. As the predetermination of both
X̂B and P̂B has no uncertainty, there can be no equivalent local
quantum state interpretation. Since the EPR premise of local
realism is no longer regarded as essential, the EPR paradox is
best thought of as a demonstration of the logical incompatibil-
ity between “local realism” and the “completeness of quantum
mechanics.” We must reject one or the other (or both).

EPR’s argument applies when one observer (Alice) can
make precise predictions for the outcome of measurements
made by a second, distant observer (Bob). The key issue
for the EPR paradox is that Alice can infer a result for

either of two of Bob’s conjugate observables by measuring
locally on her system. The EPR paradox arises when the
accuracy of her inferences would violate quantum mechanics,
if she could infer results for both conjugate observables
simultaneously. This demonstration of the EPR paradox is
most simply achieved by comparing the conditional variances
for Alice’s measurements with the variances of the Heisenberg
uncertainty relation [9,36].

A. Entanglement criteria

The original EPR paradox focused on states that showed
correlation and anticorrelation for position and momentum,
respectively. Duan et al. and Simon [37,38] showed that
entanglement between modes a and b is confirmed if

D = �2(X̂A − X̂B) + �2(P̂A + P̂B) < 1. (1)

In the case (1), the 1 arises from the commutation relation
[â,â†] = 1, and reflects the quantum noise associated with the
four observables. A more general criterion is the product form:
Entanglement is confirmed when �(X̂A − X̂B)�(P̂A + P̂B) <

1/2 [30,39].
Quadrature phase amplitudes are measured using local

oscillator methods, in which a strong field interferes with a
signal field, using a beam splitter. A full analysis of a local
oscillator measurement shows that it is actually equivalent to
a Schwinger spin measurement once the local oscillator is
accounted for. It is useful to consider entanglement measures
that have been developed for spin measurements. In particular,
one can show entanglement using the spin version of (1) [30]

�2(Ĵ X
A ∓ Ĵ X

B

) + �2(Ĵ Y
A ± Ĵ Y

B

)
<

∣∣〈Ĵ Z
A

〉∣∣ + ∣∣〈Ĵ Z
B

〉∣∣, (2)

and also the Heisenberg-product entanglement criterion [39]√
�2

(
Ĵ θ

A−Ĵ θ
B

)
�2

(
Ĵ

θ+π/2
A +Ĵ

θ+π/2
B

)
<

∣∣〈Ĵ Y
A

〉∣∣ + ∣∣〈Ĵ Y
B

〉∣∣
2

. (3)

B. EPR paradox steering criteria

While entanglement as confirmed by (1) is necessary for the
EPR paradox, it is not sufficient. To quantitatively demonstrate
the paradox, in the style constructed by EPR, the level of
correlation in Alice’s predictions must be compared with the
quantum limit for a local state that might predetermine Bob’s
statistics. Thus, for the EPR paradox, the relevant quantum
noise level is that of one observer, B, alone.

The EPR paradox confirms “steering,” whereas the entan-
glement of (1) does not. Steering has been established as
a distinct form of nonlocality [11]. The EPR paradox and
steering types of entanglement provide a distinct resource
for quantum information with applications not achievable for
arbitrary entangled states [26].

An EPR paradox signature has been formulated in terms
of conditional variances [36]: Thus EPR entanglement is
observed when

�(X̂B |X̂A)�(P̂B |P̂A) < 1/4. (4)

Since the precise choice of measurement at mode A is not
important, only the inference, this criterion is sometimes more
generally written as �infX̂B�infP̂B < 1/4.
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More recently, it has been pointed out that the EPR signature
is achieved once the entanglement variances become small
enough [9,20]. EPR entanglement is detected if either

D = �2(X̂A − X̂B) + �2(P̂A + P̂B) < 1/2, (5)

or �(X̂A − X̂B)�(P̂A + P̂B) < 1/4. These criteria are special
cases of (4), and may not give the optimal measurement
strategy for obtaining an EPR paradox, but are useful in many
practical cases where only (5) is measured.

Spin EPR measures can also be obtained, just as with
entanglement per se, using the inferred Heisenberg uncertainty
principle approach. From the Heisenberg spin uncertainty
relation �ĴX

B �Ĵ Y
B � |〈Ĵ Z

B 〉|/2, one can derive several simple
spin-EPR criteria [9,30,40]. For the case of a large nonzero
mean spin, taken for definiteness in the z direction, an EPR
paradox is demonstrated when

�inf Ĵ
X
B �inf Ĵ

Y
B < 1

2

∣∣〈Ĵ Z
B

〉∣∣. (6)

This criterion for the EPR paradox can be expressed in a
particularly useful, though less general form, as follows:√

�2
(
Ĵ θ

A − gĴ θ
B

)
�2

(
Ĵ

θ+π/2
A + g′Ĵ θ+π/2

B

)
<

∣∣〈Ĵ Y
B

〉∣∣
2

. (7)

In this version, the simplification has been made that the
inference is given using a fixed linear approximation with
constant gain g.

III. DYNAMICAL PREPARATION OF BEC EPR
ENTANGLEMENT

We now turn to examining how to generate EPR entangle-
ment in a BEC. A two-well BEC system can be modeled by
the two-mode Hamiltonian [31]

Ĥ /h̄ = κ(â†b̂ + âb̂†) + g

2
(â†â†ââ + b̂†b̂†b̂b̂). (8)

Here κ is the conversion rate between the two components,
denoted by mode operators a and b, and g is the nonlinear self-
interaction coefficient proportional to the three-dimensional
S-wave scattering length a3D. The first term proportional
to κ describes an exchange of particles between the two
wells (modes) in which the total number is conserved. This
linear term is equivalent to that for an optical beam splitter
[32,33]. The Hamiltonian model potentially applies to other
two-mode bosonic systems including optical cavity modes or
superconducting waveguides with a nonlinear medium, as well
as other types of two-mode atomic systems. It is also known in
condensed matter and nuclear physics as the Lipkin-Meshkov-
Glick model [41]. However, we will use a two-well BEC
picture to illustrate the Gedankenexperiment we have in mind,
even though implementations may not be exactly in this form.
The two-well model and system have been studied extensively
in relation to macroscopic superposition states [33,42] and
ultrasensitive interferometric measurement [43,44].

If, in addition, we allow two internal spin components per
well, the Hamiltonian becomes

Ĥ /h̄ =
∑

i

κi â
†
i b̂i + 1

2

∑
ij

gij â
†
i â

†
j âj âi + {âi ↔ b̂i}. (9)

FIG. 1. (Color online) Creation of spatial entanglement between
modes ai and bi at different sites. The optical scheme is depicted
in (a) and the BEC two-well proposal in (b). Local spin squeezing
can be produced when the two modes at each well evolve for a
time τ under the nonlinear Hamiltonian (11). Depending on the
exact configuration, there can be coupling terms between the two
modes at each site. The well height is controlled to allow a tunneling
cross interaction between the modes. This is equivalent to the modes
interfering using a beam splitter, and the effect is to generate an
interwell spatial entanglement.

Here we consider two internal modes at each EPR site A and
B, with four modes in total, as shown schematically in Fig. 1.
The local modes can be independent (in which case local
cross couplings gij are zero), or not independent, as where
the modes are coupled by the BEC self-interaction term [44].
The coupling constant is proportional to the three-dimensional
S-wave scattering length, so that gij ∝ aij , as in the two-mode
case.

We will describe our results using the equivalent dimen-
sionless Hamiltonian

H̃ =
∑

i

κ̃i â
†
i b̂i + 1

2

∑
ij

g̃ij â
†
i â

†
j âj âi + {âi ↔ b̂i}, (10)

with dimensionless coefficients κ̃i = κi/g11NA, g̃ij =
gij /g11NA, where NA is the initial total boson number in well
A, and a corresponding dimensionless time τ = g11NAt . For
definiteness, we will choose ratios of nonlinear couplings g̃ij

to correspond to known S-wave scattering lengths of 87Rb,
(between |1〉 ≡ |F = 1,mF = +1〉 and |2〉 ≡ |F = 2,mF =
−1〉) at specific magnetic field strengths near a Feshbach
resonance B = 9.105 G. Namely, we use B = 9.086 G with
corresponding a12 = 107.8a0, and B = 9.116 G with corre-
sponding a12 = 80.8a0 [45], where a0 is the Bohr radius.
The intraspecies scattering lengths are constant and equal
to a11 = 100.4a0 and a22 = 95.5a0. However, our results,
of course, only depend on dimensionless ratios of coupling
constants rather than absolute values.

We propose to generate EPR states by preparing the
system in a multimode coherent state and then allowing
evolution according to the Hamiltonian (8). Two strategies
are compared. First, where a manipulation of tunneling (e.g.,
by changing the potential barrier height) occurs, so that
the nonlinear and linear terms are applied sequentially, and
second, where the nonlinear and linear tunneling terms act
simultaneously, as in (8) to (10). The second strategy is likely
to be more readily implemented, and is solved for in Sec. V
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via a truncated Wigner function method, with the inclusion of
further effects such as nonlinear losses.

In the two-step strategy, local squeezing is first generated for
each mode a and b via the nonlinear Hamiltonian in the absence
of tunneling, and subsequently, a strong tunneling interaction
provides a linear mixing that generates an EPR entanglement
between the two new modes c and d. The strategy is depicted
in Fig. 1.The technique is similar to that investigated ex-
perimentally in fiber-optics entanglement [46]. An important
difference is that the fiber experiment used time-delayed
pulses and dispersion to eliminate interactions, that is, local
cross couplings, between the components. This is not readily
feasible in BEC experiments, although Feshbach resonances
can achieve this to a limited extent. In the next section, we
present full quantum solutions for this two-step strategy.

We briefly remark on our choice of initial conditions. In
experiments with multiple wells, it is generally possible to
prepare condensates with relative phase coherence, provided
that tunneling is strong enough during the evaporative cooling
process. The overall phase is random, with a total number
uncertainty that is typically at least Poissonian. This quantum
state is therefore well represented by a mixture of coherent
states with a random overall phase. However, since none of
our results depend on the overall phase, it is sufficient to
consider just a single overall coherent state with an arbitrary
phase. This is a low-temperature limit, which will develop
additional fluctuations as temperatures are increased to the
critical temperature.

IV. STRATEGY I: TWO-STEP DYNAMICAL
ENTANGLEMENT GENERATION

A. Generation of local spin squeezing

In the first step, squeezing is generated locally via a
nonlinearity, given by the Hamiltonian

H̃ =
∑
i,j

g̃ij

2
â
†
i â

†
j âj âi . (11)

The initial state is a product coherent state for each mode:
|α/

√
2〉a1 |α/

√
2〉a2 . This models the relative coherence be-

tween the wells obtained with a low interwell potential barrier,
together with an overall Poissonian number fluctuation that is
typically found in an experimental BEC. We explain in the
Appendix how to calculate the nonlinear quantum dynamical
solutions of (11). These are exact calculations provided the
original multimode Hamiltonian can be reduced to simple one
or two-mode forms.

Let â1,â2 be operators for the two internal states at well
A, and b̂1, b̂2 operators for two internal states at well B.
Here N̂A = â

†
2â2 + â

†
1â1 and N̂B = b̂

†
2b̂2 + b̂

†
1b̂1 are the atom

number operators of these modes in each well. We introduce a
phase-rotated Schwinger spin operator measurement that can
be performed at each site. For site A, we define

Ĵ X
A = 1

2
(â†

2â1e
i�θ + â

†
1â2e

−i�θ ),

Ĵ Y
A = 1

2i
(â†

2â1e
i�θ − â

†
1â2e

−i�θ ), (12)

Ĵ Z
A = 1

2
(â†

2â2 − â
†
1â1),

FIG. 2. (Color online) Squeezing of local Schwinger spin op-
erators versus interaction time τ . The plot shows the squeezing
�2Ĵ θ /n0 (solid lines), and �2Ĵ θ+π/2/n0 (dashed lines), where the
shot-noise level is n0 = |〈Ĵ Y 〉|/2. Squeezing is obtained when S =
�2Ĵ θ, θ+π/2/(|〈Ĵ Y 〉|/2) < 1. Inset shows the optimal phase choice θ

for squeezing. The dimensionless coupling parameters correspond
to 87Rb atoms at magnetic field B = 9.116 G (blue lines), with
corresponding scattering lengths, as explained in the text. We also
give results for the case without local cross couplings (red lines), that
is, g12 = 0, g22 = g11. Here NA = 200.

where �θ = θ2 − θ1 is the phase shift between mode 1 and
mode 2. There is also an analogous definition at B with phase
shift �φ = φ2 − φ1.

We select the phase shift to ensure 〈Ĵ Y 〉 �= 0, and the
Schwinger spin operators orthogonal to Ĵ Y are given by

Ĵ θ = cos(θ )Ĵ Z + sin(θ )Ĵ X, (13)

all of which have the property 〈Ĵ θ 〉 = 0. Here �θ = �φ =
π/2 − α, and α is time dependent given by the character of
〈â†

2â1〉 = |〈â†
2â1〉|eiα . This plane contains an infinite family

of maximally conjugate Schwinger spin operators, generally
given by Ĵ θ and Ĵ θ+π/2 which obey the Heisenberg uncertainty
relation

�Ĵ θ�Ĵ (θ+π/2) � |〈Ĵ Y 〉|/2. (14)

Quantum squeezing occurs when the variance in one conjugate
observable is reduced below the Heisenberg limit. Thus

�2Ĵ θ < |〈Ĵ Y 〉|/2 (15)

is said to be a “spin squeezed” state [47–49].
Figure 2 shows the prediction for dynamical spin squeezing

according to the solutions explained in Appendix A based on
the Hamiltonian (11). Here we have assumed that a1,b1 and
a2,b2 are initially in coherent states. For simplicity, we suppose
that the initial state is prepared in a four-mode coherent state by
using a Rabi rotation: |ψ〉 = | α√

2
〉a1 | α√

2
〉a2 | α√

2
〉b1 | α√

2
〉b2 . After

preparation, we assume that the interwell potential is increased
so that each well evolves independently to give the solutions.

We have considered the conditions required to obtain the
best squeezing of Schwinger spin operators by optimizing the
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phase choice θ (inset of Fig. 2). We set

∂�2Ĵ θ

∂θ
= ∂

∂θ
[cos2 θ�2Ĵ Z + sin2 θ�2Ĵ X

+2 cos θ sin θ〈Ĵ Z, Ĵ X〉]
= 2 cos(2θ )〈Ĵ Z, Ĵ X〉 − sin(2θ )(�2Ĵ Z − �2Ĵ X)

= 0, (16)

and therefore obtain as the optimal squeezing angle

θ = 1

2
arctan

(
2
〈
Ĵ Z

A ,Ĵ X
A

〉
�2Ĵ Z

A − �2Ĵ X
A

)
, (17)

where 〈
Ĵ Z

A ,Ĵ X
A

〉 = 1
2

(〈
Ĵ Z

A Ĵ X
A

〉 + 〈
Ĵ X

A Ĵ Z
A

〉 − 2
〈
Ĵ Z

A

〉〈
Ĵ X

A

〉)
. (18)

The squeezing value in this case is

Sθ,θ+π/2 = �2Ĵ
θ,θ+π/2
A∣∣〈Ĵ Y
A

〉∣∣/2
, (19)

where

�2Ĵ θ
A = cos2 θ�2Ĵ Z

A + sin2 θ�2Ĵ X
A + 2 sin θ cos θ

〈
Ĵ Z

A ,Ĵ X
A

〉
.

(20)

B. Producing the spatial entanglement

The next step, after generating the local squeezing at each
well, is to decrease the interwell potential for a short time so
that it acts as a controllable, nonadiabatic beam splitter [33]
to allow interference between the wells. Other methods of
obtaining an effective beam splitter could also be feasible.

Entanglement is generated by the interference of two
squeezed states on a 50 : 50 beam splitter with a relative
optical phase of ϕ (Fig. 1). The resulting entangled modes
are labeled by c1,2 and d1,2. Schwinger spin operators Ĵ θ

C/D

are defined for these modes, in accordance with Eq. (12). We
note that Ĵ

θ,θ+π/2
C , Ĵ θ,θ+π/2

D are measurable locally, in the style
necessary for an EPR experiment, by using Rabi rotations and
number measurements.

The input-output relations for the Schwinger spin operators
are given by ĉ = t â + reiϕb̂, and d̂ = t b̂ − re−iϕ â with
the amplitude reflection and transmission coefficients being
denoted t and r . Here we use ϕ = π/2 and r = t = 1/

√
2.

Thus

ĉ = â + ib̂√
2

, d̂ = b̂ + iâ√
2

. (21)

The variances �2(Ĵ θ
C − Ĵ θ

D) and �2(Ĵ θ+π/2
C + Ĵ

θ+π/2
D ) can

both be small, so that

S− = �2
(
Ĵ θ

C − Ĵ θ
D

)
< 1

2

(∣∣〈Ĵ Y
C

〉∣∣ + ∣∣〈Ĵ Y
D

〉∣∣) (22)

and

S+ = �2
(
Ĵ

θ+π/2
C + Ĵ

θ+π/2
D

)
< 1

2

(∣∣〈Ĵ Y
C

〉∣∣ + ∣∣〈Ĵ Y
D

〉∣∣),
the degree of variance reduction being limited only by the
amount of squeezing in the input modes. This is the signature
of EPR entanglement, in accordance with the entanglement

FIG. 3. (Color online) Inference squeezing S− = [�2(Ĵ θ
C −

Ĵ θ
D)/n0] (solid lines) and S+ = [�2(Ĵ θ+π/2

C + Ĵ
θ+π/2
D )/n0] (dashed

lines) after the beam-splitter interaction, where the shot-noise
level is n0 = (|〈Ĵ Y

C 〉| + |〈Ĵ Y
D 〉|)/2. Here N = NA = NB = 200. The

parameters are the same as Fig. 2. The red lines show the result
without local cross couplings (i.e., g12 = 0, g22 = g11).

criteria (2) and (3). In fact,

�2
(
Ĵ θ

C ∓ Ĵ θ
D

) = cos2 θ�2
(
Ĵ Z

C ∓ Ĵ Z
D

) + sin2 θ�2
(
Ĵ X

C ∓ Ĵ X
D

)
+ cos θ sin θ

[〈
Ĵ Z

C ∓ Ĵ Z
D ,Ĵ X

C ∓ Ĵ X
D

〉
+〈

Ĵ X
C ∓ Ĵ X

D ,Ĵ Z
C ∓ Ĵ Z

D

〉]
. (23)

A similar expression can be given for �2(Ĵ θ ′
C ± Ĵ θ ′

D ). The
solutions show a reduction in these variances, for suitable
parameters, to indicate that Alice can infer Bob’s observable
Ĵ θ

C (by measuring Ĵ θ
D) with increasing accuracy, as �2(Ĵ θ

C −
Ĵ θ

D) → 0. Similarly, she can infer the conjugate observable
Ĵ

θ+π/2
C (by measuring Ĵ

θ+π/2
D ) to an increasing accuracy, as

�2(Ĵ θ+π/2
C + Ĵ

θ+π/2
D ) → 0. We call these variances “inference

variances” to remind us of their role in the EPR paradox.
Ideally, we want to find a regime for which both inference
variances become very small.

It is convenient to express the output spin operators in terms
of the inputs: We find

Ĵ Z
C − Ĵ Z

D = i

2
[â†

2b̂2 − b̂
†
2â2 − â

†
1b̂1 + b̂

†
1â1],

Ĵ Z
C + Ĵ Z

D = 1

2
[â†

2â2 − â
†
1â1 + b̂

†
2b̂2 − b̂

†
1b̂1],

Ĵ X
C − Ĵ X

D = i

2
[ei(θ2−φ1)â

†
2b̂1 − e−i(θ1−φ2)b̂

†
2â1 (24)

−ei(θ1−φ2)â
†
1b̂2 + e−i(θ2−φ1)b̂

†
1â2],

Ĵ Z
A + Ĵ Z

B = Ĵ Z
C + Ĵ Z

D ,

where we have used θ2 − φ2 = θ1 − φ1 = 0 due to the
symmetry of a and b, and θ2 − φ1 = θ2 − θ1 = π/2 − α as
introduced for (13). The solutions for the inference squeezing
�2(Ĵ θ

C − Ĵ θ
D) and �2(Ĵ θ+π/2

C + Ĵ
θ+π/2
D ) are shown in Fig. 3.

We note that unlike most EPR states the inference variances
are asymmetrical.

The spin orientation measured at each site can be selected
independently to optimize the criterion for the state used. One
can then show EPR entanglement via spin measurements by

023625-5



B. OPANCHUK, Q. Y. HE, M. D. REID, AND P. D. DRUMMOND PHYSICAL REVIEW A 86, 023625 (2012)

FIG. 4. (Color online) Entanglement (Eproduct < 1) based on the
criterion in product form (25). EPR paradox entanglement is obtained
when Eproduct < 0.5. The solid and dotted lines stand for N = NA =
NB = 200 and for N = 2000 with couplings corresponding to B =
9.116 G; while the dash-dotted and dashed lines assume no local cross
couplings (i.e., g12 = 0, g11 = g22, for N = 200 and for N = 2000).

using the product entanglement criterion (3)

Eproduct =
√

�2
(
Ĵ θ

C − Ĵ θ
D

)
�2

(
Ĵ

θ+π/2
C + Ĵ

θ+π/2
D

)
(∣∣〈Ĵ Y

C

〉∣∣ + ∣∣〈Ĵ Y
D

〉∣∣)/2
< 1. (25)

After using the beam splitter, entanglement can be detected
as Eproduct < 1, as shown in Fig. 4 by the solid curve, which
assumes the couplings between spins found at the rubidium
Feshbach resonance. Note that, consistent with the results
found in previous studies of entanglement in the ground state,
the dashed curve of Fig. 4 shows that no cross couplings (i.e.,
g12 = 0) gives much better results still. This would require
spatially separated condensates for each spin orientation
to eliminate cross couplings, as recently demonstrated by
using magnetic gradient techniques [50]. Figure 4 reveals
improvement in the entanglement as one increases the number
of atoms in the condensate.

C. EPR paradox entanglement

The entanglement predicted for the dynamical scheme is
strong enough that it demonstrates an EPR paradox (steering)
nonlocality. This level of entanglement is reached when
Eproduct < 0.5 (as shown in Sec. II), which occurs in the
presence of local couplings for the larger atom numbers
N = 2000, as shown in Fig. 4. The EPR paradox entanglement
can be obtained for lower atom numbers N ∼ 200 when local
couplings are nonexistent.

Next we will examine the predictions for the more sensitive
EPR criterion (4), which involves measurements of the
conditional variances. The EPR argument is based on an
accuracy of inference, that an observer at D can predict the
result Ĵ θ

C for an observer at C, to a certain measurable level of
uncertainty. A simple way to determine an upper limit to this
uncertainty is to use a linear estimate gĴ θ

D , based on the result
Ĵ θ

D for measurement at D. Then we arrive at the EPR paradox

FIG. 5. (Color online) EPR paradox entanglement, shown by
the simultaneous inference squeezing of S− = [�2(Ĵ θ

C − gĴ θ
D)/n0]

(solid lines) and S+ = [�2(Ĵ θ+π/2
C + g′Ĵ θ+π/2

D )/n0] (dashed lines)
with optimal g and g′, where the shot noise level is n0 = (|〈Ĵ Y

C 〉|)/2.
Plots show different local cross couplings: (a) B = 9.116 G, and (b)
B = 9.086 G. Insets show the optimal value of factors g (solid lines)
and g′ (dashed lines) with time. Here NA = NB = 200, and other
parameters are as for Fig. 2.

criterion of (7)

EEPR−product =
√

�2
(
Ĵ θ

C − gĴ θ
D

)
�2

(
Ĵ

θ+π/2
C + g′Ĵ θ+π/2

D

)
∣∣〈Ĵ Y

C

〉∣∣/2

< 1, (26)

which reduces to Eproduct < 0.5, for the choice g = 1. In fact,
this choice of g is optimal where the inference squeezing is
very strong.

We now determine how to optimize the choice of g, where
the entanglement is weaker. The best choices for g and g′

are adjusted to minimize �2(Ĵ θ
C − gĴ θ

D) and �2(Ĵ θ+π/2
C +

g′Ĵ θ+π/2
D ). Following [36]

∂

∂g
�2(Ĵ θ

C −gĴ θ
D

) = 2g�2Ĵ θ
D−〈

Ĵ θ
C,Ĵ θ

D

〉 − 〈
Ĵ θ

D,Ĵ θ
C

〉 = 0 (27)

implies the optimal g is given by

2g = (〈
Ĵ θ

C,Ĵ θ
D

〉 + 〈
Ĵ θ

D,Ĵ θ
C

〉)
/�2Ĵ θ

D. (28)

We note 〈Ĵ θ
C,Ĵ θ

D〉 = 〈Ĵ θ
D,Ĵ θ

C〉. There is similarly an optimum
for the value of g′, with phase θ ′ = θ + π/2. Figure 5 shows
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the optimal value of factors g and g′ with different cross
couplings, versus time, for atoms NA = 200.

Using the optimal values of the constants, one can evaluate
the predictions for the variances �2(Ĵ θ

C − gĴ θ
D). We can

express the required moments in terms of the moments of
modes a, b, e.g.,

Ĵ Z
C − gĴ Z

D = g−
(
Ĵ Z

A + Ĵ Z
B

)
+ ig+

[
â
†
2b̂2 − b̂

†
2â2 − â

†
1b̂1 + b̂

†
1â1

2

]
, (29)

where we define g± = (1 ± g)/2, and use θ2 − φ2 = θ1 −
φ1 = 0 due to the symmetry of a and b. The minimum variance
is obtained by substitution of optimal g, (28). One finds

�2(Ĵ Z
C − gĴ Z

D

) = g2
−�2Ĵ Z

+ + g2
+�2Ĵ Z

− , (30)

where

�2Ĵ Z
− = �2

(
Ĵ Z

C − Ĵ Z
D

)
= �2

(
i
â
†
2b̂2 − b̂

†
2â2 − â

†
1b̂1 + b̂

†
1â1

2

)
, (31)

�2Ĵ Z
+ = �2

(
Ĵ Z

C + Ĵ Z
D

) = �2
(
Ĵ Z

A + Ĵ Z
B

)
.

Similarly

Ĵ X
C − gĴ X

D = g−
(
Ĵ X

A + Ĵ X
B

)
−g+

[
â
†
2b̂1 − b̂

†
2â1 + â

†
1b̂2 − b̂

†
1â2

2

]
(32)

with θ2 − φ1 = −(θ1 − φ2) = π/2, for which the minimum
variance is

�2
(
Ĵ X

C − gĴ X
D

) = g2
−�2Ĵ X

+ + g2
+�2Ĵ X

− , (33)

where

�2Ĵ X
− = �2

(
Ĵ X

C − Ĵ X
D

)
= �2

(
− â

†
2b̂1 − b̂

†
2â1 + â

†
1b̂2 − b̂

†
1â2

2

)
, (34)

�2Ĵ X
+ = �2

(
Ĵ X

C + Ĵ X
D

) = �2
(
Ĵ X

A + Ĵ X
B

)
.

Also,〈
Ĵ Z

C − gĴ Z
D ,Ĵ X

C − gĴ X
D

〉 = g2
−〈Ĵ Z

+ ,Ĵ X
+ 〉 + g2

+〈Ĵ Z
− ,Ĵ X

− 〉. (35)

The minimum interference squeezing �2(Ĵ θ
C − gĴ θ

D) and
�2(Ĵ θ+π/2

C + g′Ĵ θ+π/2
D ) with optimal choices of g and g′

are shown in Fig. 5. Unlike the original formulations of
the EPR paradox, in this case, the two inference variances
are asymmetric. The second inference variance exceeds the
quantum limit for large enough τ . We note that for strong
correlation as shown by S+ over a large range of τ the optimal
choice for g becomes 1. On the other hand, for the poor
correlation shown by S− as τ becomes larger, the optimal
choice becomes g′ = 0, so that the variance S+ is limited to
the variance of Bob’s spin (Fig. 5).

Figure 6 shows regimes for which the EPR criteria are
satisfied (i.e., EEPR−product < 1) for different cross couplings.
As the number of atoms increases, the spin squeezing increases
and so too does the degree of the EPR paradox, as shown

FIG. 6. (Color online) EPR paradox is predicted (EEPR−product <

1), for a variety of local cross couplings. Here N = NA = NB =
2000;B = 9.116 G (solid line),B = 9.086 G (dotted line), and with
no cross-couplings, that is, g12 = 0, g22 = g11 (dashed line). We use
the optimal value of factors g and g′ for each case. Other parameters
are as for the last figures.

in Fig. 7. The result is consistent with previous studies of
the CV EPR paradox nonlocality [8,35]. An EPR paradox

FIG. 7. (Color online) Effect of atom number: (a) N = NA =
NB = 200 (dashed lines) and N = 2000 (solid lines) on the EPR
paradox entanglement with optimal gain factors g and g′, for fixed
couplings B = 9.116 G. Inset shows the individual squeezing in-
ferences S− = [�2(Ĵ θ

C − gĴ θ
D)/n0] (solid lines), S+ = [�2(Ĵ θ+π/2

C +
g′Ĵ θ+π/2

D )/n0] (dashed lines) with optimal g and g′, for N = 2000.
(b) The optimal EEPR−product versus different number of atoms. Inset
shows the corresponding g, g′ versus N .
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FIG. 8. (Color online) Entanglement (a) Eproduct and
(b) EEPR−product after evolution of the full Hamiltonian (9)
including tunneling for N = 200 and B = 9.116 G, without the
application of the beam splitter. The results are shown for values
κ̃ = 0.1 (blue solid lines), κ̃ = 0.8 (red dashed lines), κ̃ = 0.9 (green
dotted lines), and κ̃ = 1 (cyan dash-dotted lines).

for the quadrature phase amplitudes of optical modes has
been confirmed in a number of experiments [9]. Whether
this effect is realizable for atoms, however, is a different
question. Considerations include the size of τ compared to the
decoherence time of the BEC and whether interactions like
nonlinear losses ignored in the model (11) will come into play
to reduce the EPR entanglement. To address these questions,
we employ the stochastic truncated Wigner function technique
valid for large N [34] in the next section.

V. STRATEGY II: SIMULTANEOUS EVOLUTION WITH
TUNNELING PRESENT AND INCLUDING LOSSES

The degree of EPR entanglement is limited by the number
of atoms (N ) in the ensemble. Figure 7 shows a base value of
∼0.9 for N = 200, but the entanglement improves to ∼0.65
for N = 2000. However, the unitary evolution approach of the
previous section becomes limited once dissipation effects are
important. These effects are known to occur in ultracold atomic
systems especially at high densities due to spin-changing
atomic collisions which cause density-dependent two-body
and three-body losses. With this in mind we investigate the
effectiveness of using a large number approximation, namely
the truncated Wigner function technique [34]. In this approach,
higher-order terms in 1/N3/2 are ignored, to allow a stochastic
calculation based on a positive Wigner function. This method

readily scales to large numbers of atoms and modes [51] and
can include nonlinear losses. The detailed description of the
method can be found in Appendix B.

The predictions of the truncated Wigner method are
indistinguishable from the exact method given in Appendix A
in the case of zero losses and no tunneling, which confirms
its validity for N ∼ 200–2000. The advantage of the Wigner
method is that it allows a ready solution of the dynamics
of the full Hamiltonian (8), (9) where both tunneling and
nonlinear terms are present, even for large atom numbers.
The method also allows the inclusion of losses, which are
known to destroy squeezing and entanglement, and will
come into play in realistic experimental arrangements. For
example, tunneling cannot be completely suppressed, and also
potentially significant is the role of nonlinear loss that will
come into play with large atom numbers.

Once tunneling is present in the nonlinear Hamiltonian,
entanglement can be created between the two modes without
the second beam-splitter step described in Sec. IV. Figure 8
shows the effect of tunneling on the entanglement. Strong
tunneling (κ̃ ∼ 1, i.e., with the strength of the same order as the
nonlinear interaction) produces significant entanglement even
without the final application of the beam splitter. However,
tunneling this strong is hard to achieve in a simple two-well
BEC experiment, where values of κ̃ ∼ 10−3 − 10−2 are more
common. The achievement of such large couplings is likely to
require a more sophisticated experimental design.

FIG. 9. (Color online) Entanglement (a) Eproduct and
(b) EEPR−product after evolution of the full Hamiltonian (9)
including tunneling for N = 2000 and B = 9.116 G, without the
application of the beam splitter. Meaning of the lines is the same as in
Fig. 8.

023625-8



DYNAMICAL PREPARATION OF EINSTEIN-PODOLSKY- . . . PHYSICAL REVIEW A 86, 023625 (2012)

FIG. 10. (Color online) Entanglement Eproduct after evolution of
the full Hamiltonian (9) including tunneling for N = 200 and B =
9.116 G, (a) without and (b) with the application of the beam splitter.
The results are shown for values κ̃ = 0.01 (blue solid lines), κ̃ = 0.5
(red dashed lines), and κ̃ = 1 (green dotted lines).

If one increases the number of atoms N , with the absence
of losses the dimensionless drift part of equations (B4) will
stay the same, but the results will differ, as shown in Fig. 9.
The entanglement improves with higher N , as in the case of
the two-step strategy and as found previously for ground-state
calculations. This result is consistent for continuous variable
EPR entanglement, which has been predicted in optics for high
intensity Gaussian states.

We also analyze the predictions for entanglement with the
insertion of step 2, the “beam-splitter” interaction described
in Sec. IV.B. We focus on the case where local couplings
are present, although this gives a worse case prediction for
entanglement. The application of the beam splitter improves
entanglement significantly when tunneling is weak, but with
κ̃ values close to 1 tunneling becomes the prevalent source of
entanglement, as illustrated in Fig. 10 (and also Fig. 4 for the
case of κ̃ = 0).

The presence of linear losses or intraspecies losses de-
creases the maximum entanglement, as shown in Fig. 11,
and the effect can be quite significant. We emphasize here
that losses are highly adjustable through changes in density,
so these issues are more related to appropriate experimental
design than to fundamental limits. But when the nonlinear
interspecies losses are enabled, our simulations show that they
unexpectedly increase the entanglement (Fig. 12).

We have found that this only occurs with a nonlinear
loss γ̃12 that specifically couples the two species together.

FIG. 11. (Color online) EPR paradox entanglement as measured
by EEPR−product without tunneling and with the application of the
beam splitter, for B = 9.116 G and NA = NB = 2000. (a) Only
linear losses are enabled; no losses (solid blue lines), γ̃1 = 5 × 10−3

(dashed red lines), γ̃1 = 10−2 (dotted green lines). (b) Only two-body
intraspecies losses are enabled; no losses (solid blue lines), γ̃22 =
5 × 10−6 (dashed red lines), γ̃22 = 10−5 (dotted green lines).

Other forms of loss, including linear loss, will simply reduce
the entanglement (as one expects from decoherence effects).
Generating entanglement by a manipulation of reservoirs has

FIG. 12. (Color online) EPR paradox entanglement as measured
by EEPR−product without tunneling and with the application of the
beam splitter, for B = 9.116 G and NA = NB = 2000. Only two-
body interspecies losses are enabled; no losses (solid blue lines),
γ̃12 = 10−4 (dashed red lines), γ̃12 = 10−3 (dotted green lines).
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been observed for atomic ensembles [52]. The process in our
case appears to be related to the fact that nonlinear absorption
just by itself is known to create a nonclassical, sub-Poissonian
state [53], which can then become entangled through linear
couplings alone.

VI. SUMMARY

In summary, we have analyzed two strategies for the
dynamical preparation of squeezed and entangled atomic
states, through the use of nonlinear interactions that rely on
the naturally occurring S-wave interactions between trapped
atoms. The possible advantage of the methods proposed
here is that they do not require the use of separate local
oscillators, as are often employed in optics for measuring
entanglement. These could be potentially technically difficult
to use in some cold-atom systems due to dephasing that is
caused by interatomic interactions in the local oscillator itself,
when combined with number fluctuations. However, atomic
homodyning has recently been realized [3] and may present a
better strategy in some cases, particularly where it is important
to avoid local cross couplings.

We find that robust spatial entanglement and EPR inference
is possible under the correct conditions, even including
Poissonian number fluctuations. These effects are also not
greatly perturbed by realistic loss values. In fact, with the
presence of certain types of interspecies loss, we calculate
that enhanced entanglement is possible. Finally, we note
that the optimum regime is for rather large coupling or
tunneling values between the spatial modes, which appears
to require a different experimental design to a simple two-well
system.

The EPR paradox entanglement studied in this paper con-
firms an inconsistency of local realism with the completeness
of quantum mechanics [7], and is evidence for the form of
nonlocality called “steering” [11]. We emphasize, however,
that EPR entanglement is not itself sufficient to imply a
direct failure of local realism, as would be demonstrated by
a violation of a Bell inequality [6,8]. The method employed
to arrive at the predictions of EPR entanglement illustrates
this point since the truncated Wigner function is positive,
and therefore provides a local hidden variable theory to
describe the statistics of experiments where the measure-
ment is effectively that of a quadrature phase amplitude,
even though significant EPR entanglement can be obtained
[8]. The distinction between the EPR steering and Bell
forms of nonlocality has been emphasized further in recent
papers [12].
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APPENDIX A: EXACT DYNAMICAL SOLUTIONS

1. One-mode model

We start by considering a simple nonlinear, single-mode
interaction that occurs locally at each well, and is modeled by
Hamiltonian

Ĥ /h̄ = g

2
: N̂2 : . (A1)

To understand the dynamics induced by the above Hamil-
tonian, we calculate results in the Heisenberg picture, where
one obtains

dâi

dt
= i

h̄
[Ĥ ,âi] = −igâ†ââ = −igN̂ â. (A2)

Since the number of particles is conserved, this has the solution

â(t) = exp[−igN̂t]â(0), (A3)

which gives

〈â(t)〉 = 〈
(0)|â(t)|
(0)〉

=
∞∑

n,m=0

C∗
nCm〈n| exp[−igN̂t]â(0)|m〉

=
∞∑

n=0

C∗
nCn+1

√
n + 1 exp[−ignt]

= αe−|α|2
∞∑

n=0

e−ignt |α|2n

n!

= α exp[|α|2(e−igt − 1)]. (A4)

This predicts a well-known behavior with three character-
istic time scales.

(1) On very short time scales, there is simply an oscillation
with a renormalized frequency of ω′ = gn, where n = |α|2. A
similar result is obtained classically.

(2) On intermediate time scales, there is a quadratic
damping, with a characteristic damping rate of g

√
n, which

is proportional to the standard deviation in the initial particle
number.

(3) Finally, on very long time scales there is a succession
of periodic revivals where the initial state and all its properties
are regained exactly, apart from a possible phase shift. This
occurs whenever t = 2π/g .

2. Two-mode model

Next, consider a simple two-mode model, with two in-
ternal (spin) modes, where the Hamiltonian for the coupled
system is

Ĥ = h̄

2

∑
ij

gij â
†
i â

†
j âj âi = h̄

2
:
∑
ij

gij N̂iN̂j : . (A5)

We can solve this using either Schrödinger or Heisenberg
equations of motion. In the Heisenberg case, one obtains

dâi

dt
= i

h̄
[Ĥ ,âi] = −i

∑
j

gij â
†
j âj âi = −i

∑
j

gij N̂j âi .

(A6)
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Since the number of particles is conserved in each mode, this
has the solution

âi(t) = exp

[
− i

∑
j

gij N̂j t

]
âi(0). (A7)

We suppose the initial quantum state factorizes into a
vacuum state in one mode and coherent state in the second,
and that the condensate mode is give by

|
(0)〉 = |0〉a1 |α〉a2 = |0〉a1

∞∑
n=0

Cn|n〉a2 , (A8)

which gives

â
†
1â1|
(0)〉 = 0, â

†
2â2|
(0)〉 = |α|2|
(0)〉. (A9)

In this coherent state the number fluctuation variance is N .
Suppose we apply a linear beam splitter, then, after the beam
splitter

ā1 = 1√
2

(â1 + â2), ā2 = 1√
2

(â2 − â1), (A10)

the state becomes

|
̄(0)〉 =
∣∣∣∣ α√

2

〉
a1

∣∣∣∣ α√
2

〉
a2

. (A11)

After the application of the nonlinear Hamiltonian (A5),
squeezing is generated locally, and

〈āi(t)〉 = 〈
̄(0)|āi(t)|
̄(0)〉
=

〈
α√
2

∣∣∣∣
〈

α√
2

∣∣∣∣ exp

[
− i

∑
j

gij N̂j t

]
āi

∣∣∣∣ α√
2

〉∣∣∣∣ α√
2

〉

=
∞∑

n1,n2,m1,m2=0

C∗
n1

C∗
n2

Cm1Cm2

×〈n1|〈n2| exp

[
− i

∑
j

gij N̂j t

]
āi |m1〉|m2〉

= α√
2

exp

[ |α|2
2

(e−igi1t − 1)

]
exp

[ |α|2
2

(e−igi2t − 1)

]
.

(A12)

We wish to calculate the phase variance in θ̂ ≡ θ̂1 − θ̂2 as
this gives rise to the decay in an interference pattern

〈(�θ̂)2〉 ≡ 〈θ̂2〉 − 〈θ̂〉2. (A13)

APPENDIX B: TRUNCATED WIGNER METHOD

Including losses, the master equation in four-mode approx-
imation is written as

dρ̂

dt
= − i

h̄
[Ĥ ,ρ̂] +

∑
l

γlLl [ρ̂], (B1)

where the Hamiltonian is defined as (9), and the loss term has
the form

Ll [ρ̂] = 2Ôl ρ̂Ô
†
l − Ô

†
l Ôl ρ̂ − ρ̂Ô

†
l Ôl . (B2)

We consider three different sources of losses: Ô22A = â2
2

and Ô22B = b̂2
2 (two-body intraspecies loss), Ô12A = â1â2

and Ô12B = b̂1b̂2 (two-body interspecies loss), Ô1A = â2 and
Ô1B = b̂1 (linear loss).

To further normalize the equation (B1), we use the dimen-
sionless time τ = g11NAt introduced in Sec. III. This gives us
the dimensionless master equation

dρ̂

dτ
= −i[H̃ ,ρ̂] +

∑
l

γ̃lLl [ρ̂], (B3)

with a dimensionless Hamiltonian H̃ as in (10), and dimen-
sionless loss coefficients γ̃l = γl/g11NA. This equation can be
transformed to the equivalent partial differential equation by
applying the Wigner transformation [34]

W[Â] = 1

π8

∫
d2λ1 d2λ2 d2λ3 d2λ4

×
(

4∏
i=1

exp(−λiz
∗
i + λ∗

i zi)

)

× Tr

{
Â

4∏
i=1

exp(λiẑ
†
i − λ∗

i ẑi)

}
,

where four-vectors zT = ( α1 β1 α2 β2 ) and ẑT =
( â1 b̂1 â2 b̂2 ) were introduced for convenience. The resulting
differential equation, after truncating higher-order derivatives,
is a Fokker-Planck equation (FPE) for the truncated (positive)
Wigner function W ≡ W[ρ̂]

dW

dτ
= −∂T

z aW − ∂T
z∗ a∗W + Tr

{
∂ z∗∂T

z BBH
}
W,

where

zT = ( α1 β1 α2 β2 ),

∂T
z =

(
∂

∂α1

∂

∂β1

∂

∂α2

∂

∂β2

)
,

a = −iadrift − aloss,

adrift =

⎛
⎜⎜⎜⎜⎜⎝

κ̃1β1 + α1{g̃11|α1|2 + g̃12|α2|2}
κ̃1α1 + β1{g̃11|β1|2 + g̃12|β2|2}
κ̃2β2 + α2{g̃12|α1|2 + g̃22|α2|2}
κ̃2α2 + β2{g̃12|β1|2 + g̃22|β2|2}

⎞
⎟⎟⎟⎟⎟⎠,

aloss =

⎛
⎜⎜⎜⎜⎜⎝

α1{γ̃12|α2|2 + γ̃1}
β1{γ̃12|β2|2 + γ̃1}

α2{γ̃12|α1|2 + 2γ̃22|α2|2}
β2{γ̃12|β1|2 + 2γ̃22|β2|2}

⎞
⎟⎟⎟⎟⎟⎠,

B∗ =

⎛
⎜⎜⎜⎜⎝

√
γ̃12α2 0 0 0

√
γ̃1 0

0
√

γ̃12β2 0 0 0
√

γ̃1
√

γ̃12α1 0
√

γ̃22α2 0 0 0

0
√

γ̃12β1 0
√

γ̃22β2 0 0

⎞
⎟⎟⎟⎟⎠.

This FPE is equivalent to the following set of stochas-
tic differential equations (SDEs) [54] (identical in Ito and
Stratonovich form when the conditions for Wigner truncation
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are satisfied, i.e., N � 1)

d z = adτ + Bd Z, (B4)

where d ZT = ( dZ12A, dZ12B, , . . . , dZ1A, dZ1B ) is a com-
plex six-dimensional Wiener process. These equations can
be solved numerically using conventional methods, and their
solution can, in turn, be used to get the expectations of
symmetrically ordered operator products as

〈{(â†
i )mân

j , . . . ,}sym〉 = ∫
(α∗

i )mαn
j , . . . ,W d2 z

≈ 〈(α∗
i )mαn

j , . . . ,〉paths,

where 〈〉paths stands for the average over the simulation paths.
As for Sec. III, we assume the initial state to be the coherent

state

|ψ〉 = |α0〉a1 |α0〉a2 |β0〉b1 |β0〉b2 , (B5)

where α0 = √
NA/2, β0 = √

NB/2. Therefore

αi = α0 + 1√
2
η1i , βi = β0 + 1√

2
η2i ,

where η1i and η2i are complex normally distributed random
numbers with 〈η∗

jiηkl〉 = δjkδil .
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